Field of Study
Clinical Pharmacy
Keywords
Clinical Pharmacy, Pharmaceutical care, Pharmaceutical communication, Pharmacoepidemiology, Pharmacotherapy
Lab URL
https://www.gifu-pu.ac.jp/lab/byoyaku/
臨床薬剤師として、薬を適切かつ安全に使用するためのエビデンスを構築する
Establishing evidence on appropriate and secure use of medicines as clinical pharmacists
  • 教授 吉村 知哲 Professor Tomoaki Yoshimura Ph.D. yoshimurat
  • 准教授 野口 義紘 Associate Professor Yoshihiro Noguchi Ph.D. noguchiy

研究テーマ Research Subjects

 病院薬学研究室では、臨床における実務経験を有する教員により、臨床現場に真に貢献できる高度な臨床能力と問題解決能力のある臨床薬剤師やファーマシスト-サイエンティストの育成、そして臨床現場での薬剤師実務を基盤とした医療薬学研究を実施している。
医療薬学研究として、医薬品適正使用の推進のために、臨床現場との連携により課題の抽出を行うとともに、様々な医療ビッグデータ(文献レジストリデータ、規制当局が保有する大規模副作用自発報告データベースや複数の医療機関から集積されたリアルワールドデータなど)を活用して新たなエビデンスの構築を目指している。さらに、これら医療ビッグデータから、より簡便に適切な医療情報を導出するために、新たな解析アルゴリズムの構築とその妥当性の検証も行っている。

 In the Laboratory of Clinical Pharmacy, faculty members with practical clinical experience train clinical pharmacists and pharmacist-scientists with advanced clinical skills and problem-solving abilities who can genuinely contribute to clinical practice and conduct clinical pharmacy studies based on pharmaceutical practices in medical sites. As part of clinical pharmacy studies, to promote the appropriate use of medicines, our group works to identify issues in collaboration with medical sites, and also aims to establish new evidence by utilizing various medical big data (e.g., Literature Registry Data, Spontaneous Reporting System owned by regulatory authorities and Real-World Data accumulated from medical institutions). Furthermore, our group works to construct and evaluate new medical big data analysis algorithms to more easily derive appropriate medical information from medical big data.

研究概要.jpg

研究課題 Research Objectives

  1. 病院薬剤師の業務に関連した課題の解決に関する研究
    Research on solving problems related to the work of clinical pharmacists
  2. 薬剤疫学的手法による医療ビッグデータの解析と臨床への活用
    Analysis of medical big data by pharmacoepidemiologic approach and its practical use
  3. 医療ビッグデータを用いた既存薬の新規薬効の探索研究
    Drug repositioning research using medical big data
  4. 医療ビッグデータ解析アルゴリズムの構築と評価
    Construction and evaluation of medical big data analysis algorithms

最近の研究成果 Research Results

  1. Noguchi Y., Yoshizawa S., Tachi T., Teramachi H. Effect of Dipeptidyl peptidase-4 inhibitors vs. metformin on major cardiovascular events using spontaneous reporting system and real-world database study, J. Clin. Med., 11,4988 (2022).
  2. Noguchi Y., Tachi T., Teramachi H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source, Brief. Bioinform., 22, bbab347 (2021).
  3. Noguchi Y., Murayama A., Esaki H., Sugioka M., Koyama A., Tachi T, Teramachi H., Angioedema caused by drugs that prevent the degradation of vasoactive peptides: a pharmacovigilance database study, J. Clin. Med., 10, 5507 (2021).
  4. Noguchi Y., Takaoka M., Hayashi T., Tachi T., Teramachi H., Antiepileptic combination therapy with Stevens-Johnson syndrome and toxic epidermal necrolysis: Analysis of a Japanese pharmacovigilance database, Epilepsia, 61, 1979-1989 (2020).
  5. Noguchi Y., Tachi T., Teramachi H., Comparison of Signal Detection Algorithms Based on Frequency Statistical Model for Drug-Drug Interaction Using Spontaneous Reporting Systems, Pharm. Res., 37, 86 (2020).
  6. Noguchi Y., Esaki H., Murayama A., Sugioka M., Koyama A., Tachi T., Teramachi H., Association between dipeptidyl peptidase-4 inhibitor and aspiration pneumonia: disproportionality analysis using the spontaneous reporting system in Japan, Eur. J. Clin. Pharmacol., 76, 299-304 (2020).